Applications of Machine Learning to Smart Provisioning and Predictive Sparing

Dawson Miller

Machine Learning Engineer

Eric Schneider

Principal Investigator

February 2025

Motivation

Meeting 80% combat surge ready ships by 2027 with a lagging shipbuilding programs, budget constraints and hampered global supply chain – the **readiness** of ships is even more **paramount**

Potential for 20 ships to leave inventory by 2030 with only 5-6 planned replacements

Reduced, Flat Budgets

Material, resources, and people impacted by shortfalls

Global Supply Chain

Increased OPTEMPO & Global Tensions

Davidson window

How do we get more ships?

Readiness

- Personnel, Equipment, & Training

Sustainment

Maintenance & Modernization

Approach

Digital Engineering and Machine Learning (ML) that enable intelligent automation and bolster readiness and sustainment

Upstream

Delivery of Fleet

- Build configuration baseline for a ship's service life
- Allowance Parts List (APL), configuration files, technical manuals, engineering operational sequencing system (EOSS), and planned maintenance system (PMS)
- Increased automation
- Quality improvements
- De-duplication in configuration records (anomaly removal)

Mid & Downstream

Sustainment of Fleet

- Changes to Integrated Logistics Support (ILS) and technical documents
- Modernization scheduling
- Sustainment of supply and maintenance needs
- Anomaly detection
- Implement changes and feedback to upstream

Digital Engineering & ML: Overview of Accomplishments

Automating Configuration

 Prototyped ML pipeline to analyze part requirements across ships

Predictive Sparing

- Prototype for projecting part requirements during ship's deployment
- Automated APL / Demand Matrix for discovering parts to configuration mismatches

Predictive Maintenance

- Anomaly Detection
- Categorize parts according to historical patterns of demand and supply

Upstream: Analyzing Part Requirements

Process Overview

Original PDF

- Detect List of Materials (LoM) table on page using pre-trained, stateof-the-art neural network table detection model
- Infer structure of table using classical computer vision
- Read text within each cell of the table and output to excel
- Usually, text is extracted perfectly

Process Overview

Scanned Copies

- Detect LoM table on page using pre-trained, state-of-the-art neural network table detection model
 - Not always possible
 - Sometimes table is not detected
- Infer structure of table using computer vision
 - There is some additional noise relative to having the original PDF
- Use pre-trained OCR model to extract text
- Use the bounding boxes to associate extracted text with inferred table cells
- In general, much noisier than having the original

List of Materials				
Column	1	Column2		
#####	Г	#####		
#####		#####		
#####		###	##	
#####		###	##	
#####		#####		
#####		#####		
#####		#####		

Upstream: Predictive Sparing

Predictive Sparing – what will need to happen to supply parts to get to **80% surge ready combatants** – can we predict part usage by operation for targeting the 120-day supply?

By steaming days and maintenance days for given ship class only

System part demand for given ship class: Is it possible to model the demand for parts using operating and projected hours?

ORANGE is our prediction model based on steaming hours
BLUE is actual parts demand
GREEN is current order / restocking points by Navy – calendar based

Mid & Downstream: Predictive Maintenance

Predicting a maintenance need can eliminate growth work, eliminate incorrect repairs and save parts, leading to cost reduction while improving uptime and on-time delivery

- Abundance of sensor data
- Apply ML to continuously monitor and analyze ship's operations
- Burden reduction
- Support transition from time-based to condition-based maintenance

Predictive Maintenance via Anomaly Detection

Types of anomalies

Point, subsequence, shift, trend, and variance

Prototype with Synthetic Data

- Ground truth is known
- GAN for generating synthetic data
- Inject anomalies with Anomaly Generator on Time Series (AGOTS)
 library

Methods

- Clustering
 - K-means, DBSCAN
- Predictive
 - ARIMA, LSTM, Autoencoders, Scalable Unsupervised Outlier Detection (SUOD)

Figure 2. Point and subsequence anomalies for univariate or multivariate time series.¹

Downstream: Focus on Problem Parts

Utilize order history to identify problem parts across ship lifecycles, reducing complexity of sparing and on-time delivery

Identify the problem parts based on part order statistics

Bucket parts according to a ship's cycle (deploy, work up, maintenance)

- Can we predict order trends on a per-part basis?
- On-time delivery

Inform upstream:

- Improve sparing
- Combine with configuration for natural language applications that help determine the right parts

Total Parts (niins)	82,362
Total Part Orders	8,337,794
% of Parts per 80% of Orders	3.9%
% of Parts per 50% of Orders	0.4%

Where We're Headed

Using AI/ML and Digital Engineering, optimize the parts we have and parts we need, and enable actionable interactions between the upstream and downstream workflows

Thank You

Dawson Miller

Machine Learning Engineer dawson.miller@noblis.org

Eric Schneider

Principal Investigator eric.schneider@noblismsd.com

Visit **noblis.org**

