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Motivation

Meeting 80% combat surge ready ships by 2027
with a lagging shipbuilding programs, budget
constraints and hampered global supply chain -
the readiness of ships is even more paramount
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Reduced, Flat Budgets

— Material, resources, and people impacted by
shortfalls

Global Supply Chain

Increased OPTEMPO & Global Tensions

— Davidson window

How do we get more ships?
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5¥¥ Readiness

— Personnel, Equipment, & Training

Sustainment

— Maintenance & Modernization



Approach

Digital Engineering and Machine Learning (ML) that enable intelligent automation and
bolster readiness and sustainment
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Delivery of Fleet

Build configuration baseline for a ship's
service life

Allowance Parts List (APL), configuration files,
technical manuals, engineering operational
sequencing system (EOSS), and planned
maintenance system (PMS)

Increased automation
Quality improvements

De-duplication in configuration records
(anomaly removal)

weasysumoq 3 PIA

Sustainment of Fleet

» Changes to Integrated Logistics Support
(ILS) and technical documents

= Modernization scheduling

= Sustainment of supply and maintenance
needs

= Anomaly detection

» |Implement changes and feedback to
upstream



Digital Engineering & ML: Overview of Accomplishments

Automating Configuration Predictive Maintenance

= Prototyped ML pipeline to analyze = Anomaly Detection

part requirements across ships = Categorize parts according to

historical patterns of demand and

supply
Predictive Sparing
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= Prototype for projecting part
requirements during ship’s
deployment

= Automated APL / Demand
Matrix for discovering parts to
configuration mismatches

weasisumod 3 PIA
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Upstream: Analyzing Part Requirements

= Detect List of Materials (LoM) table on page using pre-trained, state- e Detect LoM table on page using pre-trained, state-of-the-art neural
of-the-art neural network table detection model network table detection model

= Infer structure of table using classical computer vision — Not always possible

= Read text within each cell of the table and output to excel = Sometimes table is not detected

= Usually, text is extracted perfectly e Infer structure of table using computer vision

— There is some additional noise relative to having the original PDF
e Use pre-trained OCR model to extract text

e Use the bounding boxes to associate extracted text with inferred
table cells
D —— e In general, much noisier than having the original
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Upstream: Predictive Sparing

Predictive Sparing — what will need to happen to supply parts to get to 80% surge ready
combatants — can we predict part usage by operation for targeting the 120-day supply?

System part demand for given ship class: Is it
possible to model the demand for parts using
operating and projected hours?

By steaming days and maintenance days for given
ship class only

Ship Profile

Navy ¢

nt 'reo er ints

fio e

800 9 67% 80% (Sdn? NﬁH] Actual vs. Predictions (Total Demand Across NIINs)

70.0 . oo 70%

60.0 E 60% 1000 1 — Actual
v . s
;’ 50.0 50% S E‘ 800 4 — Predl.ct!ontRFR]
o 400 40% 2 c —— Prediction (Navy)
= B 35 d
g 30,0 30% £ b 600
— o
£ 200 20% o 2 400

10.0 10% £

00 0% 8 200

Year Year Year Year
9 11 13 01

I Fffective Operating

B Effective in Maint.

Effective Avail

=== Avail by Percent

ORANGE is our prediction model based on steaming hours
¢ BLUE is actual parts demand
nObI IS GREEN is current order / restocking points by Navy — calendar based 6



Mid & Downstream: Predictive Maintenance

Predicting a maintenance need can eliminate growth work, eliminate incorrect repairs
and save parts, leading to cost reduction while improving uptime and on-time delivery
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Predictive Maintenance via Anomaly Detection
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Prototype with Synthetic Data | (a) Univariate time seri ies. (b) Multivariate time seri ies.

Subsequence Anomalies

=  Ground truth is known AT '*3 L,.v]gi A WA B
=  GAN for generating synthetic data e
= Inject anomalies with Anomaly Generator on Time Series (AGOTYS)

library

Methods

= (Clustering

— K-means, DBSCAN
=  Predictive

— ARIMA, LSTM, Autoencoders, Scalable Unsupervised Outlier
Detection (SUOD)
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Downstream: Focus on Problem Parts

i ) ' il

Utilize order history to identify problem parts across ship lifecycles, reducing
complexity of sparing and on-time delivery

|dentify the problem parts based on part order statistics

Bucket parts according to a ship's cycle (deploy, work up, Total Parts (niins) 82,362
maintenance)

. . Total Part 8337 794

— Can we predict order trends on a per-part basis? Orders SR
— On-time delivery % of Parts per 3.9%
80% of Orders =P

ﬁ Inform upstream:

. % of Parts per .
— Improve sparing 50% of Orders et

— Combine with configuration for natural language
applications that help determine the right parts
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Where We're Headed

L3

Using Al/ML and Digital Engineering, optimize the parts we have and parts we need,
and enable actionable interactions between the upstream and downstream workflows

Create data

Ingest various unstructured data . "
Lakehouse

+ Forecasting
* NLP
* Anomaly detection

Drawings
Engineering change
Tech Feeback !

Remedy Feedback )

ILS Cert :

Provisioning Technical data E —"% _% %_ e
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Configuration I

SW configuration

PMS
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maintenance requirements
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Training Requirements

Obselecnce
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Improvements
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Spare Part Prediction
Modeling based on
steaming days

More accurate
configuration

Target need for
maintenance when
combined with
Failure prediction
(CBM)

Prediction modeling
and stock on hand
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Thank You
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