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Abstract: We describe LQMetric, an automated tool for mea-
suring the image quality of latent f ingerprints. The value returned 
by LQMetric is an estimate of the probability that an image-
only search of the Federal Bureau of Investigation’s (FBI) Next 
Generation Identif ication (NGI) automated f ingerprint identif i-
cation system  (AFIS) would hit at rank 1 if the subject’s exemplar 
(rolled) f ingerprints are enrolled in the gallery. LQMetric can also 
be used in assessing the value of latent f ingerprints in non-AFIS 
casework. LQMetric is incorporated into the FBI’s Universal Latent 
Workstation  (ULW) software and has been used operationally 
since 2014. The development of an automated latent f ingerprint qual-
ity metric was driven by practical use cases including predicting the 
likelihood of successful AFIS matching; helping examiners determine 
whether an image-only or human-markup search is more appropriate 
for a particular latent f ingerprint; supporting a quality-directed work-
f low whereby a backlog is prioritized based on quality or lower quality 
latent prints are directed to highly experienced examiners; or provid-
ing an objective diff iculty measure for quality assurance purposes 
such as f lagging complex prints for special handling or additional 
verif ication. We describe how LQMetric was developed and trained, 
how well it predicts NGI AFIS search results, and we also discuss 
human examiner latent f ingerprint value assessments.
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Introduction
Latent fingerprints are often key forensic evidence. The value 

or utility of latent prints is significantly affected by their quality, 
which affects both the likelihood that they can be used success-
fully in searching large-scale automated fingerprint identification 
systems (AFIS) and the ability of expert latent print examiners 
to reach conclusions. Here we describe LQMetric, an objective, 
automated algorithm to measure the quality of latent prints, 
designed both to predict AFIS performance and to augment or 
replace the informal subjective assessments of quality used by 
latent print examiners. 

LQMetric builds directly on the FBI Laboratory’s Latent Quality 
Study [1, 2], in which 86 latent print examiners each assessed the 
quality of approximately 70 fingerprint images (out of a pool of 
1,090 latent and exemplar fingerprint images), resulting in a total 
of 5,245 quality assessments. In that study, examiners provided 
an overall assessment of the quality of each image and indicated 
within each impression that examiner’s degree of confidence in 
discerning the features in the image. That study also resulted in 
the development of prototype software tools for the manual or 
automated definition of local clarity1 maps, automated overall 
clarity metrics, and calculation of metrics assessing correspond-
ing clarity for comparisons. As part of the LQMetric project, much 
of the LQAS functionality was enhanced and incorporated for 
operational use in the FBI’s Universal Latent Workstation (ULW) 
software2 [2], which is the software used by latent print examiners 
in federal, state, and local law enforcement agencies to search the 
FBI’s Next Generation Identification  (NGI) system (by way of 
their respective state or federal conduits or automated biometric 
systems). Most of the work described here was conducted in 2012 
to 2013. LQMetric has been used operationally since 2014 as part 
of the FBI’s ULW software, but no detailed description has previ-
ously been published. Since LQMetric was developed, a variety 
of intriguing fingerprint quality metrics relevant to latent print 
quality assessment have been proposed that may offer improve-
ments on LQMetric [3–9].

1	 Note on Terminology – We use “clarity” to refer to the fidelity with which 
anatomical details are represented in an impression. “Quality” is a broader 
term, defined in ISO/IEC 29794-1 [10] to include not just fidelity (clarity), 
but also character (quantity or distinctiveness of the physical features) and 
utility (appropriateness for use, either in human examinations or by automated 
systems). A fingerprint quality metric is therefore a means of quantifying the 
expected utility of a given fingerprint.

2	 FBI ULW software is available at www.fbibiospecs.cjis.gov/Latent/PrintServices.
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Latent Quality Metric (LQMetric)
LQMetric assesses quality in two stages (Figure 1). First, 

a local clarity map is generated using image processing and 
machine learning algorithms, resulting in a representation of 
the clarity at each pixel location in an image, defined using the 
ANSI/NIST-ITL standard [11]. Second, the overall quality is 
calculated based on clarity map and latent print attributes and is 
trained and calibrated using AFIS matcher scores to predict the 
estimated probability of a rank-1 hit  of a search of the FBI’s NGI 
AFIS, if the subject is enrolled in the gallery (database). Note 
that LQMetric was developed and trained on latent fingerprints; 
for it to be of use for latent palmprints, both the local clarity and 
overall quality algorithms would have to be retrained.

Local Clarity Map Generation
Clarity maps provide a latent print examiner (or algorithm) 

reviewing the image a standard means of defining the level of 
confidence in the presence or absence of features in each location 
in a fingerprint image. LQMetric automatically generates local 
clarity maps that comply with ANSI/NIST-ITL [11], which is the 
international standard for interchange of forensic f ingerprint 
data (as well as other biometric data). These local clarity maps 
are defined as a categorical scale, with a standardized color-
coding scheme, with each level defined in terms of the fidelity 
of reproduction of different types of features at each location in 
an image grid: level 0 (black) is nonfriction ridge area; level 1 

Figure 1
LQMetric process for generating the local clarity map and calculating the 
overall score. Dashed lines indicate an input that was only used during the 

training process.



Journal of Forensic Identification
446 / 70 (4), 2020

(red) has debatable ridge f low; level 2 (yellow) has clear ridge 
f low but debatable minutiae; level 3 (green) has clear presence or 
absence of minutiae but debatable ridge edges; and level 4 (blue) 
has clear ridge edges. Level 5 clarity (aqua), defined as clear 
pore detail, was rarely used by human examiners and therefore 
is not included in LQMetric clarity maps. For example, a green 
area in a clarity map indicates high confidence in the marked 
minutiae in that area and that there are no missing minutiae in 
that area; a yellow area may include missing or false minutiae. 
Each map has an effective resolution of 125 pixels per  inch3 
(ppi, 4.9 pixels per mm), which can be seen as a gr id of  
4 x 4 pixel cells at 500 ppi (19.7 pixels per mm).

Automatic generation of a local clarity map is based on a 
variety of algorithms that assess various image attributes related 
to clarity. The study identified pre-existing tools that could be 
leveraged and developed some new image analysis tools. The 
algorithms that were used came from these sources:

•	 Custom revisions to the NIST MINDTCT (MINutiae 
DeTeCTor) feature extractor [12] to extract intermediate 
feature values and representations of data. MINDTCT 
was derived from the U.K. Home Office HO-39 feature 
extractor, which was used as the basis for the minutiae 
detector in the FBI’s ULW software (hereafter “Baseline 
features”, described in Appendix A).

•	 Custom revisions to the FBI’s remote fingerprint editing 
software (RFES), which was developed by Lockheed 
Martin in 1998 to 2000. Training with features derived 
from RFES provided classification accuracy similar to 
the Baseline features but required signif icantly more 
computation time. Because LQMetric was designed for 
operational use, the minimal increase in performance 
did not justify the increased processing time, and so 
RFES-derived features were not included in LQMetric. 

•	 Our implementation of Fourier-based features derived 
from the Latent Fingerprint Image Quality (LFIQ) 
algorithm [10] (hereafter “FFT features”).

For each latent print, over 40 different pixel-wise feature 
maps were extracted in total using a combination of these 
algorithms. These features measure a combination of general 
image attributes along with information related to the frequency 
and consistency of the local latent fingerprint ridge structure. 

3	 American units are used here because FBI image capture specifications require 
that fingerprints are scanned at 500 or 1000 pixels per inch (19.7 or 39.4 
pixels per mm) and the metric equivalents would be rounded.
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The training and cross-validation of LQMetric used 1035 latent 
fingerprint images with local clarity maps marked by (human) 
latent fingerprint examiners, from the NIST ELFT-EFS#2 [13, 14] 
evaluation. The training process followed a stratified 10-fold cross-
validation strategy. The training data was stratified by randomly 
selecting samples from the pool of training samples for each clarity 
level so that each clarity level contained the same number of train-
ing samples as clarity level 4 (resulting in 179,757 samples for each 
clarity level). Clarity level 5 was significantly under-represented 
within this dataset and was therefore merged with clarity level 4. 
After stratification, the data was split into 10 folds for cross-valida-
tion. Training commenced on nine folds and the last fold was utilized 
for testing. This process was repeated until every fold served as the 
test fold. The set of pixel-wise feature maps from each extractor 
was paired with the pixel-wise ground-truth human-marked clarity 
information and used as input to an OpenCV CvRTrees random 
forest machine learning algorithm [15]. This process results in a 
model that takes the feature maps as input and outputs a predicted 
clarity map. The predicted clarity maps are post-processed to only 
include the largest contiguous area of ridge f low (yellow or better) 
to eliminate isolated cells and to approximate a region of interest 
as marked by latent print examiners. Figure 2 shows examples of 
latent prints from the training and validation set, with examiner-
marked clarity maps, and output of the CvRTrees model when 
training with the Baseline and FFT features.

Figure 2
Examples of latent fingerprints and corresponding human-marked clarity 

maps, as well as the predicted clarity maps utilizing the different feature maps 
as input. Note that the local clarity map algorithm is designed to crop the 

clarity maps to the largest contiguous area of ridge flow. LQMetric Overall 
Latent Quality assessment score: upper image = 40; lower image = 78.
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Overall Latent Quality Assessment
LQMetric’s automated assessment of Overall Latent Quality  

uses metrics that are derived from the local clarity maps and 
from automatically extracted minutiae, trained against matcher 
scores from searches of those latents against large-scale AFISs. 

The latent f ingerprint images that were used for training 
and evaluation for predicting AFIS performance were selected 
from a subset of the NIST ELFT-EFS Evaluation #2 dataset 
(EE2, 997 117 latent prints) and the NIST ELFT-EFS Public 
Challenge dataset (PC2, 245 latent prints) [13, 14]. Latent prints 
were used only if good-quality exemplars were available and 
if human latent print examiners determined that identification 
was possible. Therefore, 69 images from the EE2 dataset were 
omitted that had only low-quality exemplars (NFIQ=5 for both 
plain and rolled exemplars) or an examiner-determined status of 
inconclusive (e.g., no overlap between the latent and exemplars).

The overall quality assessment includes a f ilter to f lag 
nonfingerprint images, which are assigned an overall quality 
of zero. To train the nonfingerprint filter, we used LQMetric on 
more than 8000 nonfingerprint images from a variety of sources. 
Based on these results, partition trees were used to set thresh-
olds for images with extremely small areas of potential ridge 
detail or extremely large counts of debatable “minutiae”, which 
are assumed to be nonfingerprint images. Additional details are 
described in Appendix B.

The matcher scores used in training were from searches of two 
AFIS Systems. The operational FBI NGI system had a gallery of 
69 million subjects (at the time) but could only be searched using 
the PC2 dataset. The NGI Testbed was a clone of the NGI latent 
AFIS algorithms, but with a gallery of only 500,000 subjects, 
searchable using both the EE2 and PC2 datasets. Each subject in 
the gallery had two associated exemplar sets: one set of 10 rolled 
fingerprint images and one set of 10 plain fingerprint images. 
All searches were conducted against all f ingers, so that the 
effective gallery size was 690 million for the operational NGI 
and 5 million for the NGI Testbed. 

Regression models were trained to predict the NGI Testbed 
score from the local clarity map and other fingerprint attributes. 
The data was fit using a generalized linear modeling technique 
via penalized maximum likelihood [5] (lasso from the R package 
glmnet [16]). The predicted NGI Testbed matcher scores were 
calibrated using isotonic regression so that an LQMetric score 
indicates the probability that a latent f ingerprint image-only 
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search (i.e., without manually marked minutiae) would hit at 
rank-1 on the NGI operational system if the subject is enrolled 
in the gallery. 

LQMetric’s Overall Latent Quality is an estimate of the 
accuracy of searches conducted against NGI; this performance 
is not necessarily generalizable to other AFIS algorithms or 
systems. However, experience with ELFT-EFS [13, 14] indicates 
that AFISs from different vendors are generally consistent 
regarding which latents result in the highest matcher scores, 
indicating that latents with very high LQMetric values are 
likely to be searched successfully across AFIS algorithms or 
systems, but there may be more disparity among latents with 
low LQMetric values.

Feature Selection 
Selection of the features implemented in the operational 

LQMetric algorithm was based primarily on accuracy in predict-
ing AFIS matching performance and secondarily on accuracy 
in generating local clarity maps. Algorithm speed was used to 
select among features when performance was otherwise equiva-
lent. Cross-validated (10-fold) performance measures for each 
candidate model were used in selection of the f inal algorithm 
[including mean squared error (MSE); root mean squared error 
(RMSE); mean absolute percentage error (MAPE); Spearman’s 
Rho; Kendall’s Tau; percent deviance, R2; and area under the 
receiver operating characteristic curve (AUC)]. With respect to 
accuracy in generating local clarity maps, the CvRTrees models 
individually trained with the Baseline, RFES, and FFT features 
all provided roughly similar classification accuracy, and, there-
fore, feature selection was based on accuracy in predicting NGI 
matching performance. 

With respect to accuracy in predict ing NGI matching 
performance, the cross-validated results described in terms 
of the R2 metric are shown in Table 1. For comparison, Table 
1 also shows the effectiveness of the clarity maps marked by 
latent print examiners in predicting AFIS performance, which 
serves as a rough upper bound on performance. Overall, the 
CvRTrees model trained with the Baseline features provided the 
highest average R2 metric whereas the CvRTrees model trained 
with both Baseline and FFT features provided the highest R2. 
The CvRTrees model trained with the Baseline features was 
selected for LQMetric because it provided the highest average 
R-squared (R2). 
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	 Min R2 Mean R2 Max R2

Examiner-Marked Clarity Maps 0.18 0.43 0.60

Model Features	      

 	 Baseline 0.08 0.37 0.53

 	 FFT 0.01 0.30 0.48

 	 Baseline+FFT 0.07 0.36 0.58

Table 1
Cross-validated average R2 summaries for examiner-marked clarity, clarity 

generated from Baseline features, FFT features, and their combination.

The f inal algorithm implemented in LQMetric uses the 
following features, each of which is calculated based on the local 
clarity map (and can be returned using LQMetric’s “verbose” 
mode):

•	 The area (in square millimeters) of clear ridge f low and 
minutiae (green and better clarity)

•	 The “good f low” area (in square millimeters) of clear 
ridge f low and minutiae, after using erosion then dilation 
morphological operations to eliminate minor gaps or 
protrusions

•	 The ratio of clear versus unclear areas of the image (area 
of green and better clarity over area of yellow clarity)

•	 The count of very high confidence minutiae (minutiae 
in blue areas)

•	 The count of debatable minutiae (minutiae in yellow 
areas)

For additional details on these features, see Appendix C. For 
examples of images with local clarity maps and overall quality 
calculated by LQMetric, see Appendix D.
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Evaluations of Performance
The performance of LQMetric can be evaluated in three 

ways: the classification accuracy of the local clarity maps, the 
accuracy of predicting AFIS performance, and the accuracy of 
predicting latent print examiners’ assessments of value. 

Evaluation of Local Clarity Maps
Table 2 shows the accuracy of classification for the LQMetric-

predicted clarity levels versus the actual clarity levels marked 
by latent print examiners. Overall, the clarity as marked by the 
human latent print examiners was correctly predicted for 61.4% 
of samples; the prediction was within ± 1 clarity level for 94.2% 
of samples. This is slightly better than the reproducibility of 
clarity markup among human latent print examiners as reported 
by Ulery et al. [17], in which examiners agreed on clarity levels 
in 46.3% of locations and agreed within ± 1 clarity level for 
89.1% of locations.4 The extremes (clarity levels 0 and 4) resulted 
in the most accurate predictions.
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0 71.2% 22.3% 5.5% 0.9% 0.1%

1 22.4% 51.1% 23.8% 2.3% 0.4%

2 9.4% 23.8% 47.8% 16.1% 2.9%

3 1.7% 3.4% 17.0% 60.1% 17.8%

4 0.2% 0.2% 1.0% 19.7% 78.9%

Table 2
Confusion matrix describing average classification accuracy and error rates 

for the local clarity maps generated using CvRTrees model training with 
Baseline features across 10-fold cross-validation. (n=179,757 samples for 

each clarity level.)

4	 In Ulery et al. [17], Appendix A, Table 11 compares the reproducibility of 
clarity marked by multiple examiners in 44,941 locations in which at least 
one of the examiners marked a minutia; because the data is conditioned on 
the presence of minutiae, the lowest clarity levels are under-represented.
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Evaluation of Predictions of AFIS Performance
Figure 3 shows the effectiveness of LQMetric in predicting 

AFIS hits for both the Testbed and operational NGI searches. 
For both, LQMetric is monotonic with respect to hit rate: higher 
LQMetric scores indicate there is a higher likelihood to hit at 
rank 1. The measured rates are lower for operational NGI than 
the Testbed, as would be expected given the much larger gallery 
size. With respect to the Testbed, LQMetric accurately predicts 
the hit rate for most of its range but is less accurate for LQMetric 
values less than 20. The operational NGI results are similar, but 
slightly less accurate. 

Human Examiner Evaluation
We evaluated LQMetric with respect to latent print examin-

ers’ assessments of the value of the latent prints, as well as in 
terms of latent print examiners’ assessments of relative differ-
ences in quality. Figures 4a and 4b show the association between 
LQMetric and human examiners’ value assessments: 15 latent 
print examiners were each presented 240 latent prints and asked 
to rate the value of each latent print (out of a pool of 1152 latents 
from the ELFT-EFS #2 dataset; 3 to 6 examiners reviewed each 
latent). The LQMetric software provides an option to return 
“verbose” details in addition to the default (which in verbose 
mode is referred to as Overall Latent Quality). Here we also 
show the predicted VID value, which rescales the response to 
estimate the probability that a latent print examiner would assess 
the latent as of value for identif ication. (LQMetric’s verbose 
mode also returns the various specialized assessments of quality 
and clarity described by Hicklin et al. [1])

Figure 3
Proportion of image-only searches that resulted in rank-1 hits, limited to 

searches for which the subject was known to be in the database. Left: NGI 
Testbed, 1241 latent prints searched against a gallery of 5 million distinct 

fingers (500k subjects). Right: Operational NGI, 245 latent prints searched 
against a gallery of 690 million distinct fingers (69m subjects).
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Figure 4
Comparisons of human assessments of value with LQMetric Overall Latent 

Quality  and predicted VID measures. (a) LQMetric vs distributions of 
examiners’ value assessments [(n=3600 examiner assessments of 1152 

latents) (medians: 14,30,51,81)]. (b) LQMetric vs consensus of examiners’ 
value assessments [n=1089 latents from (a) for which a majority of 

examiners agreed on a value assessment]. (c) LQMetric vs informal “Good, 
Bad, Ugly” assessments [(n=1252 latents, 1 examiner per latent; different 

examiners from (a) and (b) (medians: 30,51,73)]. Crossbars in boxplots 
indicate deciles (10%, 90%).

There is a strong association between LQMetric scores and 
examiners’ assessments of value, especially when the LQMetric 
Overall Latent Quality score is 50 or larger. High LQMetric 
scores are overwhelmingly assessed as high quality by examin-
ers. However, when LQMetric indicates that a latent is low 
quality, examiners often consider latents to be of value. Note 
that because LQMetric is predicting a successful AFIS search 
and examiners were asked to rate based on utility for individual-
ization, it is not surprising that examiners assessed some images 
with low LQMetric scores as “of value”; examiners may be able 
to use a latent print in casework even if it is unlikely to hit in 
an AFIS search. 

Figure 4c shows the association between LQMetric and a 
different quality scale often used by human examiners, the infor-
mal “good, bad, ugly” scale [17]. Again, LQMetric is strongly 
associated with the human quality assessments, but is not a 
perfect predictor of the human assessments. Note the differences 
in “good” in Figure 4a versus 4b, underscoring the variability of 
informal assessments and different examiners. 
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To assess LQMetric in terms of latent print examiners’ assess-
ments of relative differences in quality, the 15 examiners were 
shown each latent print side-by-side with a randomly selected 
latent (from a different subject), and the examiners were asked 
to rate whether one of the latent prints was of higher quality or 
whether they were of equal quality. Figure 5 shows the extent to 
which the examiners’ assessments of higher quality were associ-
ated with the higher LQMetric value. Each column contains a 
10-point range of LQMetric score differences between the two 
latents in an image pair, and the colors indicate whether the 
latents that examiners assessed as higher quality had the higher 
LQMetric score. For example, for latents that had a difference 
of LQMetric scores between 30 and 40, 68% of examiners rated 
the latent with the higher LQMetric score as higher quality, 
16% rated the latent with the higher LQMetric score as lower 
quality, and the remainder rated the latents as equal quality. In 
general, examiners’ assessments of the relative quality of two 
latent prints correspond to LQMetric, and this association is 
strongest as the difference in LQMetric scores between the two 
images increases. 

Figure 5
Comparisons of human assessments of relative quality with LQMetric. 

[n=1800 examiner assessments of the relative quality of pairs of latents 
(1309 agreements, 234 disagreements)].
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Conclusions
The primary purpose of LQMetric is to predict the probabil-

ity of a successful AFIS search. However, a tool that can reliably 
and objectively measure the quality of latent prints may be 
valuable for a variety of purposes, such as providing automated 
value assessments for use in quality assurance; f lagging specific 
latent prints for additional verif ication; providing assistance 
to examiners in determining which latents are appropriate for 
image-only searching (as opposed to requiring human-marked 
minutiae); replacing the informal “good”, “bad”, and “ugly” 
categories for assessments of the quality of latents in a case or 
in a dataset; enabling quality-directed workf low by directing 
poor-quality latents to more expert examiners, or prioritizing 
backlog based on quality; and in research evaluating the efficacy 
of new latent print processing or development methods. Clarity 
maps are used operationally by some latent print examiners in 
documenting their analyses of the latent prints for archiving or 
casework exchange. NIST’s Latent Interoperability Transmission 
Specification [18] includes local clarity maps in defining trans-
actions for latent AFIS data exchange and for interchange of 
latent print annotation among examiners as part of non-AFIS 
casework.

In this paper, we describe LQMetric, operational software 
that has been widely used since its release in 2014 and referenced 
in multiple publications [19–24]. Here we describe the under-
lying algorithms used in LQMetric and how it was developed 
and trained. LQMetric is incorporated for operational use in 
ULW, which is the software used by latent print examiners in 
federal, state, and local law enforcement agencies to search the 
FBI’s NGI system (by way of their respective state or federal 
conduits or automated biometric systems). Our results indicate 
that LQMetric is an effective predictor of AFIS performance as 
measured by searches of NGI and that there is general agreement 
between latent print examiners and the overall LQMetric score. 
Future work may further enhance its functionality, notably with 
respect to adding palmprint functionality. 
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Appendix A
Local Clarity Map Generation

To generate a local clarity map, LQMetric uses 20 low-level 
clarity feature maps as input to a random forest machine learn-
ing algorithm, trained on local clarity maps manually marked 
by human examiners (1035 latents).

Each feature map is based on sampling points (SPs) with an 
effective resolution of 125 pixels per inch (ppi, 4.9 pixels per 
mm). This can be seen as a grid of cells, with each SP represent-
ing one 4x4 pixel cell at 500 ppi (pixels per mm). 

Each of the following 10 base clarity feature maps is accom-
panied by an absolute deviation feature map, calculated by 
taking the absolute value of the difference of the center SP with 
each of the neighboring SPs (i.e., the 7x7 area of SPs centered on 
the current SP) and returning the mean. These are used to assess 
the consistency or noise of the base feature map at that point. If 
the absolute deviation value is 0, then every sampling point in 
the 7x7 square in the base feature map has an identical value. 

The algorithm is also passed a f lag indicating SPs at the 
extreme edges of images (less than 1/8"). 

Direction-Based Clarity Feature Maps:
•	 Curvature: maximum difference in direction between a 

cell and its eight immediate neighbors, used to f lag valid 
points of inf lection as well as ill-defined areas 

•	 Direction change: difference between the direction in 
a cell and the mean direction of the neighboring cells

Grayscale-Based Clarity Feature Maps:
•	 Grayscale count: number of distinct grayscale values 

present in a cell
•	 Grayscale median: median grayscale value in a cell
•	 Grayscale range: difference between the 10th and 90th% 

values in grayscale histogram

Discrete Fourier Transform (DFT)-Based Clarity Feature 
Maps:
•	 Low-frequency magnitude: magnitude of low-frequency 

results from the DFTs used to determine ridge f low 
direction
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•	 Maximum magnitude: maximum magnitude of DFT 
direction f low, limited to cells that are within accept-
able bounds of normalized magnitude and low-frequency 
magnitude

•	 Normalized magnitude: normalized magnitude of DFT 
frequency

Other Clarity Feature Maps:
•	 Valid neighbors: number of valid neighboring cells
•	 Quality: pre-exist ing met r ic developed for ULW, 

combining ridge f low, grayscale, and high curvature 
data

All of the low-level clarity feature maps are derived from a 
revised version of the NIST MINDTCT code. 

Appendix B
Flagging Nonfingerprint Images

To f lag nonfingerprint images, we used LQMetric on 8471 
nonfingerprint images from a variety of sources and, based 
on these results, partition trees were used to set thresholds for 
images with extremely small areas of potential r idge detail 
or extremely large counts of debatable “minutiae”, which are 
assumed to be nonfingerprint images. The following thresholds 
were used:

•	 The largest contiguous area of possible friction ridge 
area (i.e., red or better) is less than 30 square millime-
ters.

•	 The largest contiguous area of good-quality friction 
ridge area (green or better) is less than or equal to 
0.5 square millimeters.

•	 There are more than 795 automatically extracted minutia.
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Appendix C
Calculation of Overall Quality

In LQMetric, the overall quality value is calculated based 
on the following measures. Each of the measures is calculated 
using the local clarity map.

Area3plus: area of green and better clarity in sq mm (i.e., 
area of clear ridge f low and minutiae)

•	 GFA3plus: good f low area of green and better clarity in 
sq mm, after using erosion then dilation morphological 
operations to eliminate minor gaps or protrusions less 
than  2 SPs (1.0 mm, approx. 1.8 ridges)

•	 Area3plusDiv2: ratio of area of green and better clarity 
over area of yellow clarity (i.e., ratio of clear to unclear 
area of the image)

•	 Min2: number of minutiae in yellow areas (i.e., number 
of debatable minutiae; larger values indicate lower 
quality)

•	 Min4: number of minutiae in blue areas (i.e., number of 
very high confidence minutiae, in areas of clear ridge 
edges)



Journal of Forensic Identification
462 / 70 (4), 2020

Appendix D
LQMetric Examples

Six examples of latent prints with the LQMetric-generated 
local clarity map and overall quality for each.	

Figure 6
Examples of latent prints with the LQMetric-generated local clarity map and 

overall quality for each (Images 1–2 of 6).
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Figure 7
Examples of latent prints with the LQMetric-generated local clarity map and 

overall quality for each (Images 3–4 of 6).

Figure 8
Examples of latent prints with the LQMetric-generated local clarity map and 

overall quality for each (Images 5–6 of 6).




