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ML APPROACHES
Autoencoders compress data into a lower-dimensional representation 
and reconstruct it back to its original form. Autoencoders can identify 
anomalies in time series because of reconstruction error and minimize the 
difference between the input and its reconstruction, which leads to learning 
the normal patterns. With new data inputs, data points that significantly 
deviate from learned patterns (i.e., have high reconstruction errors) are 
identified as anomalies. 
Convolutional Neural Networks (CNNs), traditionally used for image 
processing, are also effective for time series data due to their ability to 
extract high-level features through hierarchical layers of convolutions. 
Each layer applies filters to the input data which capture temporal 
dependencies and feature hierarchies. Anomalies are detected by 
assessing deviations from the learned feature norms. 
Gradient-Boosted Decision Trees work by sequentially building an 
ensemble of weak models, usually decision trees, where each subsequent 
model attempts to correct the errors made by the previous one.
Graph Neural Networks (GNNs) utilize the spatial relationships within 
graph-structured data, to capture complex patterns and 
dependencies. Anomalies are detected by examining deviations from the 
typical patterns learned across the graph. The inherent natural noise in 
particle size readings makes identifying an anomaly at a single sensor 
challenging, which is why this approach is favorable.  
K-Means Clustering is a ML model that tags a dataset with a statistically 
significant set of cluster groups. Once a set of clusters have been 
assigned to a dataset, patterns emerge that can be used to provide deeper 
insights into the data under analysis.
Long Short-Term Memory (LSTM) utilizes gates that manage information 
flow over extended periods, enabling effective learning of long-term 
dependencies in time series data, improving upon traditional recurrent 
neural networks.
Transformer models leverage self-attention mechanisms to process 
sequences in parallel, rather than sequentially, enhancing efficiency and 
scalability. This architecture excels in understanding relationships within 
data, which is crucial for complex data.

INTRODUCTION
The United States is investing in multiple programs to improve capability to 
monitor for airborne releases of chemical or biological agents using 
sensors and anomaly detection data analytics. For example, the Biological 
Detection for the 21st Century (BD21) program invested in sensors to 
collect particle size, concentration, and fluorescence data, which are 
analyzed using data fusion techniques and ML algorithms to distinguish 
biological threats from background particles (Bryan and Richardson, 
2020). Despite significant investments, the Government Accountability 
Office (GAO) has stated, “Biological aerosol sensors that monitor the 
air are to provide data on biological material in the environment, but 
common environmental material such as pollen, soil, and diesel 
exhaust can emit a signal in the same range as a biological threat 
agent, thereby increasing false alarm rates… false alarms produced 
by biological sensor technologies could be reduced by using an 
anomaly detection algorithm in addition to the sensor” (GAO, 2021).
Recent developments in ML techniques offer the ability to move from 
traditional classification of detection events at individual sensors, to an 
approach fusing data from multiple sensors, weather stations, and an 
understanding of local patterns and sources that may vary diurnally, 
seasonally, or weekly. This research compared multiple approaches for 
biological aerosol anomaly detection using high density, low-cost, particle 
counters distributed throughout an urban environment. 

CONCLUSIONS
Overall, smarter data fusion is expected to play a larger role in biological 
incident detection and response, detect a biological release, map the 
extent of contamination, predict potential consequences, and enable a 
response. Due to the high variability in background aerosol 
concentration, anomaly detection can’t serve as a standalone 
detection modality but can support detection if integrated with the 
appropriate concept of operations. As ML algorithms improve, low-cost, 
high density, distributed aerosol spectrometers are likely able to assist in 
anomaly detection, but data variability will continue to be a limited factor.

Figure 1. PurpleAir outdoor sensors measuring the concentration of 
1 µm particles in the Washington, D.C., metro region.

METHODOLOGY
Our approach utilized data from PurpleAir sensor network (Figure 1) 
available at www.purpleair.com. These low-cost, networked aerosol 
spectrometers (Figure 2) provide data across six size bins, and we 
acquired two years of aerosol, and supporting sensor data from the 
Washington, D.C. metro region:
• 104 PurpleAir sensors measuring in 0.3, 0.5, 1, 2.5, 5, and 10 µm size 

bins, providing particle concentration per deciliter, temperature, and 
humidity every two minutes

• Meteorological data on wind speed and direction at hour intervals
We developed synthetic data by modeling aerosol transport of a 50 kg 
release of 1 µm anthrax spores once per month for all 24 months of data 
using the Hazard Prediction and Assessment Capability. Simulated data, 
converted to particles/deciliter, was overlaid with existing PurpleAir data.

STATISTICAL APPROACH
Benford’s Law predicts that in naturally occurring datasets, the leading 
digit "1" will appear about 30.1% of the time, "2" around 17.6%, and the 
frequency decreases logarithmically up to "9". To check for conformity, the 
observed frequency of each leading digit in sample data is compared to 
these expected proportions using statistical tests such as the chi-square 
goodness-of-fit test. If the underlying data's leading digit distribution 
conforms to Benford's Law and a newly obtained sample significantly 
deviates from Benford's expected distribution, it suggests that the data 
may not be naturally occurring or that an anomaly has occurred.

RESULTS
The various ML approaches and statistical approach were 
developed/trained and tested on the data set. Two of the ML approaches 
demonstrated initial success (Table 1), while the remaining four ML 
approaches and statistical approach were unsuccessful despite a large 
release (50 kg) used in the synthetic data.
• The successful ML approaches were Gradient-Boosted Decision Trees, 

and Transformer Models
• The unsuccessful ML approaches were Autoencoders, Graph Neural 

Networks, K-means Clustering, and Long Short-Term Memory 
• The unsuccessful statistical approach was Benford’s Law
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Type Model F-score Precision Recall
Decision Tree XGBoost 0.591 0.565 0.619
Transformer MEMTO 0.2842 0.2367 0.3555
Transformer Donut 0.1049 0.0924 0.1214

LSTM EncDecAD 0.0426 0.0223 0.4786

CNN SRCNN 0.0366 0.0190 0.4786

Graph FuSAGNet 0.0279 0.0143 0.6412

LSTM LSTMAD 0.0245 0.0124 0.9

Graph GDN 0.0172 0.0088 0.3358

AutoEncoder AutoEncoder 0.0125 0.5745 0.0244

Table 1. F-Score, Precision, and Recall of ML approaches. F1 is the 
combined form of precision and recall. Precision is number of true 
predicted positives / number of total predicted positives. Recall is number 
of true predicted positives / number of all ground truth positives.

Figure 2. PurpleAir Flex Air Quality Monitor.
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