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ABSTRACT  

United States maritime services are looking to better integrate artificial intelligence (AI) into their maintenance procedures 

to improve readiness. Modern naval ships employ many onboard sensors to collect information about the ship’s systems, 

performance, and navigation parameters. The current method for analyzing this data and detecting possible issues is mostly 

manual. The abundance of sensor data enables one to apply machine learning (ML) techniques to continuously monitor 

and analyze the ship’s operations. ML systems can be applied to automatically detect or predict and report potential 

failures. Using ML to automate the analysis of shipboard sensors will allow the Navy to move from time-based 

maintenance to condition-based maintenance. In this paper, we describe experiments in which the sensor data is 

represented as multivariate time-series. In practice, the anomalies do not occur frequently, and the data associated with 

anomalies is scarce. Therefore, we apply unsupervised time-series anomaly detection (UTSAD) techniques to find 

anomalies. Initially, the experiments are carried out on a simulated time-series with artificially inserted anomalies, so that 

the ground truth is known, and quantitative results can be obtained. We experiment with point anomalies as well as 

subsequence anomalies such as shift, trend, and variance anomalies. For the detection of anomalies, we present results 

using a density-based spatial clustering of applications with noise (DBSCAN) method, a tree-based isolation forest (IF) 

method, and a reconstruction-based autoencoder (AE) method. Finally, we present results on the actual ship data and 

discuss the implementation of an onboard real-time hierarchical analytics system. 

Keywords: Unsupervised machine learning, multivariate time-series, anomaly detection, outlier detection, preventive 

maintenance, predictive maintenance 

INTRODUCTION  

The health and maintenance of marine gas turbine engines are pivotal in the operational readiness of the U.S. Navy surface 

fleet. Marine gas turbine engines are used to generate electrical power for the vessel, as well as propulsion power. 

Currently, the maintenance of these gas turbines is largely manual, with maintenance actions occurring on a routine basis 

or on an as-needed basis. Simultaneously, modern naval ships employ many onboard sensors to collect information about 

the ship’s performance and navigation parameters from the vessels’ machinery and ship control systems. The current 

method for analyzing this data and detecting possible issues is, again, largely manual. The abundance of sensor data enables 

one to apply AI and ML techniques to continuously monitor and analyze the ship’s operations. ML systems can be applied 

to automatically detect or predict and report potential failures. Automating this process can free operators from repetitive 

tasks and potentially reduce the possibility of error as well as potentially mitigate a larger catastrophic failure. 

 

The Navy has a requirement to improve the readiness and availability of ships and systems in a budget-constrained 

environment. Using ML to automate the analysis of shipboard sensors will allow the Navy to move from time-based 

maintenance to condition-based maintenance and ultimately a predictive maintenance model, meaning that maintenance 

can be performed when the condition of the ship dictates a maintenance schedule rather than a fixed, and sometimes 

reactive, schedule. Figure 1 shows the steps in the desired transition. 

 

The large amount of sensor data collected from naval ships can be leveraged in moving toward condition-based 

maintenance. The relevant data is collected from a variety of sensors onboard the ship, and these sensors produce values 

at somewhat unpredictable intervals of time. Based on the signal definition, sensor sampling can range anywhere from 

1Hz to what is driven by the machine state. The available sensors may be sufficient for the control of operations but not 

necessarily for maintenance prediction. These sensor values are not directly labeled with a failure event. The lack of labeled 

data makes us treat this as an unsupervised time-series anomaly detection problem. With this approach, we can fully 



 

 
 

 

leverage the abundance of sensor data without relying on the laborious task of labeling each data point as normal or 

assigning it a failure mode.  

 

Time-series data can be analyzed in either a univariate or a multivariate manner. Given the higher dimensionality of the 

data in multivariate approaches, they tend to be more challenging; however, it is possible for an algorithm to analyze the 

correlation between sensor values. Anomalies can be categorized as point or subsequence anomalies; a point anomaly is a 

data point that deviates significantly from normal behavior, and a subsequence anomaly is a group of data points that 

collectively deviate from normal behavior. In this study, both types of anomalies are analyzed. 

 

The paper is organized as follows. Section 2 briefly describes related work on time-series anomaly detection, including its 

use in analyzing operations of marine engines. Section 3 describes our steps towards finding solutions to the problems of 

predictive diagnostics and prognostics of marine engines. In Section 4, experimental results are presented on artificial as 

well as real ship data. Section 5 presents our approach toward the onboard implementation of our selected algorithms. 

Finally, Section 6 gives a summary and conclusions.   

 

 

Figure 1. The U.S. Navy is moving towards predictive maintenance procedures which are prognostic in nature. (Source: 

Brief to Deputy Assistant Secretary of the Navy on Condition-Based Maintenance.) 

RELATED WORK 

Detecting anomalous patterns in time-series has been a very active area of research due to its applications in many areas 

such as finance, fraud detection, healthcare monitoring, diagnostics, manufacturing processes, etc. Since the time-series 

data can be large and complex, researchers have developed various specialized algorithms for the automatic detection of 

anomalous behavior. The surveys of these techniques can be found in [1]-[3]. This problem has been approached from 

many different angles by the research communities belonging to areas such as signal analysis, stochastic learning, statistics, 

data mining, classical ML, and deep learning [2]. Broadly speaking, three distinct learning schemes can be applied to 

multivariate time-series anomaly detection tasks: supervised, semi-supervised, and unsupervised. Supervised learning 

assumes that a fully labeled dataset is available for learning concrete boundaries between anomalous and regular data. 

Semi-supervised learning assumes that only some input data are labeled. Unsupervised learning identifies hidden data 

patterns from unlabeled datasets. The difficulty with unsupervised techniques tends to be in the evaluation of those models 

[3]. 

 

Data analysis and ML techniques have been applied for the health and performance monitoring of gas turbine engines [4]-

[6]. Additionally, ML has been applied as a method for the predictive analysis of marine engines. This predictive analysis 

has included predicting propulsion power [7], energy efficiency [8], and fuel consumption [9]-[10]. When applying ML 

to predictive maintenance, it has been noted that there are strong correlations among sensors from the same piece of 



 

 
 

 

equipment and that key parameters generally have a strong influence on the overall machinery [11]. Several unsupervised 

anomaly detection methods have been applied to monitor the marine engine. These include a cluster-based approach [12], 

a method based on auto-associative kernel regression [13], a method based on statistical process control [14], and an 

ensemble-based method that can deal with high-dimensional and large-scale sensor data [15].  Recently, Kim et al. [16] 

applied the isolation forest algorithm to detect anomalies in naval sensor data and then applied explainable AI techniques 

to understand which sensors are deviating significantly from their normal operation.  

METHODOLOGY 

As we stated above, modern ships have a control system network that may have control sufficiency but is not robust enough 

for maintenance prediction. This is why the current method for analyzing this data and detecting possible issues is largely 

manual or at best “deterministic” by hard-set alarm bands or a time threshold. The abundance of sensor data enables one 

to apply onboard analytics to continuously monitor and analyze the ship’s operations. As part of our methodology, we 

developed a system hierarchal framework by sensor clusters to determine “boundaries” where anomalies may be indicated.  

The analytics modules aided by the ML algorithms can be applied to automatically detect or predict and report potential 

failures.  

 

Hierarchical framework 

The marine gas turbine engine is a complicated mechanical system consisting of several component systems as shown in 

Figure 2. We believe that processing and analyzing data from all the component systems simultaneously is a difficult task 

because of the complexity of the problem. Therefore, we propose a framework in which there is an analytics module (AM) 

for each component system, and all the anomalies are aggregated at the main level with a centralized analytics module 

(CAM). In this paper, we focus on building an AM for the fuel system while keeping such a framework in mind. 

 

Figure 2. A simplified system diagram of a marine gas turbine generator. It is desirable to set up a hierarchical framework 

consisting of a centralized analytics module (CAM) that oversees the analytics modules (AMs) of the component systems. 

Artificial versus real data 

Most machine learning systems are data-driven. The nature of the data plays an important role in the selection of algorithms 

and the quality of data has a major impact on their performance. For the purpose of this paper, we obtained sensor and 

maintenance data from various Guided-Missile Destroyer (DDG) vessels. While there have been attempts to collect and 

annotate data from such vessels in the last few years, the process is not yet mature. We made the following observations 

about the available data: (a) while it is possible to collect sensor data at regular sampling intervals, the available data had 

many gaps, and (b) the maintenance records contained notes from the technicians written in plain English which sometimes 

have inconstancies in the maintenance action write up. It was not always clear if the maintenance action was triggered by 

a faulty operation, or if it was carried out as a part of routine maintenance and inspection. Also, only domain experts have 

sufficient knowledge to determine if a given maintenance event could have been forecasted with the help of sensors. For 

these reasons, the evaluation of the algorithms on the real data can only be subjective in nature. 



 

 
 

 

 

Figure 3. Simulated time-series with artificial anomalies. 

To obtain quantitative results to evaluate the efficacy of algorithms, we decided to first test them on a simulated time-

series data in which artificial anomalies were injected at known times. For this purpose, we generated multivariate time-

series data using autoregressive moving average processes and smoothing functions and injected four types of anomalies: 

(1) shift anomalies, (2) trend anomalies, (3) variance anomalies, and (4) point anomalies, as shown in Figure 3. While 

examining the available real data, it was not possible for us to visually identify the anomalous behavior of various sensors. 

Therefore, we do not know if the artificial anomalies are indicative of the real anomalies. Despite that, we designed our 

algorithms and set thresholds in such a way that we can detect most artificial anomalies and expect that those algorithms 

would also be effective in detecting real anomalies, whatever kind they might be. 

 

Algorithm selection 

A majority of the UTSAD methods fall under the following four categories [2]: (1) clustering-based methods, (2) 

forecasting-based methods, (3) tree-based methods, and (4) reconstruction-based methods. Clustering-based methods use 

distance metrics to compare time-series points or subsequences with each other. Time-series values that are farther away 

from the normal clusters are considered outliers or anomalies. We apply a popular clustering method called density-based 

spatial clustering of applications with noise (DBSCAN) [17]-[18] to this problem. Tree-based methods successively split 

data using binary trees and identify anomalies as data that get rapidly isolated in the trees. We apply a popular tree-based 

method called isolation forest (IF) [16, 19]. Forecasting-based methods use a learned model to forecast time-series values 

based on a context window. Anomalous behavior is detected if the predicted values show a significant deviation from the 

observed values. Forecasting-based methods require time-series values at regular sampling intervals. Since this is not true 

for the available data, we rule out the use of forecasting methods. Reconstruction-based methods build a model of normal 

behavior by encoding subsequences of a normal training time-series in a low-dimensional latent space. A decoder then 

reconstructs time-series values from the latent space. A large error between reconstructed values and observed values 

implies anomalous behavior. We experiment with a reconstruction method based on an autoencoder (AE) [22]-[23], a 

block diagram of which is shown in Figure 4. Brief descriptions of the selected algorithms are in Table 1.  



 

 
 

 

 

Figure 4. Autoencoder model. In our experimentation, we use dense layers with 16 and 8 units for the encoder and 8 and 16 units 

for the decoder, respectively. The dimensionality of our input and output is 6, and there are 4 latent variables. 

 

Table 1. Anomaly detection algorithms selected for experimentation. 

Algorithm Description 

DBSCAN DBSCAN is a density-based clustering algorithm proposed in 1996 [18]. It is a non-parametric 

algorithm that groups data points that are closely packed together. The data points that lie alone 

in low-density regions are considered outliers. There are two key parameters of DBSCAN: 

epsilon and minPts. Two data points are neighbors if the distance between them is less than or 

equal to epsilon. minPts is the minimum number of data samples required to define a cluster. 

Based on these two parameters, data points are classified as core points, border points, or 

outliers. A data point is a core point if there are at least minPts number of samples in its 

surrounding area with radius epsilon. A point is a border point if it is reachable from a core point 

and there are less than minPts number of points within its surrounding area. A point is an outlier 

if it is not a core point and not reachable from any core points. 

Isolation forest Isolation forest is a tree-based anomaly detection method first proposed in 2008 [19]. Since then, 

there have been several improvements suggested for the algorithm [20, 21]. During the training 

phase, IF starts with a root node consisting of all the data points. While building a tree, every 

internal node is split into two sub-nodes until there is complete data isolation or maximal tree 

depth is reached. Data is considered isolated when it is alone in its node. During the scoring 

phase, a score for each data point is calculated which reflects the similarity degree between the 

test data point and other items in the tree. The number of nodes crossed by the test data point 

from the root node to reach its external node is called the path length. Data points with shorter 

path lengths are likely to be anomalies. 

Autoencoder Autoencoder [22, 23] is a deep learning-based model consisting of two major components, an 

encoder, and a decoder, as shown in Figure 4. The encoder component projects the input data 

onto a latent embedding space and the decoder component takes data from the embedding space 

and reconstructs value in the original space. Autoencoders can be used to detect anomalies 

because, during training, the model learns the data and begins to reconstruct it accurately, but 

the reconstruction error happens to be larger for unusual data points. Given this assumption, we 



 

 
 

 

flag data points as anomalous if they have an unusually high reconstruction error. Also, by 

monitoring reconstruction errors for individual sensors, we can often determine which of the 

sensors are showing anomalous behavior. This feature provides a degree of explainability which 

many other algorithms are unable to provide. 

 

EXPERIMENTAL RESULTS 

We first performed experiments on the simulated data with artificial anomalies. Once the algorithms were confirmed to 

show acceptable results on the simulated data, we performed experiments on the actual data acquired from the ships. 

 

Results on artificial data 

To be able to evaluate the algorithms quantitatively, we created a tool to generate multivariate time-series data with 

artificially injected anomalies. To emulate the sensors from the fuel system, we simulated a multivariate time-series with 

six variables. Each variable is generated using an independent autoregressive moving average process with different 

parameters, followed by smoothing functions with different window sizes. We first generated data without anomalies and 

set it aside for training. We then generated test data and inserted point, shift, trend, and variance anomalies of various 

amplitudes. Our test data contained 34 anomalies, 24 of which are single-channel anomalies and 10 are two-channel 

anomalies in which there were position overlaps between anomalies. An example of our test data is shown in Figure 5.  

 

Figure 5. An example of a simulated multivariate time-series with artificially injected anomalies. 

All algorithms are sensitive to parameter settings. In our experiments, we attempted to find parameters through trial and 

error to maximize the performance of each algorithm. The receiver operating characteristics (ROC) of the three algorithms 

are shown in Figure 6. To obtain a ROC chart for the isolation forest algorithm, we varied the contamination parameter 

from 0.0005 to 0.06 in steps of 0.005. For the DBSCAN algorithm, we set minPts at 12, but varied epsilon from 0.1 to 0.7 

in steps of 0.1. Our autoencoder architecture is shown in Figure 4. To obtain a ROC curve for the autoencoder, we changed 

the threshold on the mean-squared error from 0.1 to 20.0 in the steps of 0.5. 

 

The false-alarm rate in Figure 6 is defined as the percentage of normal data points which were classified as outliers. In 

practice, a single data point would not be declared anomalous. Instead, we would be looking for several adjacent outlier 

data points occurring within a time window. Thus, the false-alarm rates for all algorithms are likely to be substantially 

lower than what is shown in Figure 6. Nonetheless, this figure is indicative of the effectiveness of the three algorithms. 
 



 

 
 

 

 
   Figure 6. Performance of DBSCAN, isolation forest, and autoencoder algorithms on artificial data. 

 

DBSCAN is the top-performing algorithm. However, DBSCAN is computationally very expensive because during 

inference, every new data point must be compared with tens of thousands of DBSCAN clusters that are formed to determine 

if it is an outlier. Therefore, it may not be feasible to run the DBSCAN algorithm in real time on the ship’s computer. The 

computations associated with the other two algorithms are reasonable, so it should be possible to implement them in real-

time without significant computational resources. The performance of the IF algorithm appears to be much better than the 

AE algorithm. However, the AE algorithm has one significant advantage over the other two methods because it can indicate 

which of the input sensor(s) are showing anomalous behavior. AE algorithm allows monitoring of reconstruction error for 

individual sensors, which means it can identify one or more sensors that are displaying anomalous behavior. Ship’s 

maintenance personnel may find this feature valuable for diagnostic purposes. 

 

Combining algorithms for improved performance 

The selected algorithms have very different decision-making mechanisms. Therefore, there is value in combining the 

outputs of these algorithms to improve overall accuracy and explainability. For example, the IF can be the default algorithm 

which is run in real time and can act as a pre-screener. Whenever the IF algorithm produces an alarm, we can run the 

DBSCAN algorithm only on those data points to determine if the DBSCAN algorithm concurs with IF. If it does, then we 

can run the autoencoder to determine which sensors have the highest reconstruction errors thus identifying individual 

sensor(s) with anomalous behavior. 

 

Results on real data 

Several assumptions were made while generating the artificial data in terms of the types, durations, and magnitudes of the 

anomalies. The data acquired from the ship is quite complex and we do not have the ability to examine the data visually 

and determine if those assumptions are valid. Therefore, we cannot say with certainty that the algorithms successful on 

the artificial data would also be successful on the actual data. For this reason, we implemented all three algorithms to 

generate anomalies for the real data. The anomalies/alarms generated by these algorithms would be evaluated subjectively 

by the ships’ maintenance experts to determine which algorithms are effective. 

 

The actual ship data provided to us was from 24 ships, each one of them having three engines for a total of 72 engines. 

For 13 engines either the maintenance or sensor data was not available, so that left us with data from 59 engines which we 

could use for algorithm development and analysis. The data was collected over a period of six years and was from the 

historical database, meaning it was not 1Hz data, but trend data stored over time hourly. An example of sensor data and 

maintenance events for one engine over a period of approximately six years is shown in Figure 7. It shows that the historical 

sensor data is not available continuously and may not always correspond with the maintenance events. Maintenance 

records contain information about when the maintenance began and ended along with the description of the parts replaced 

and/or the procedure. Without domain knowledge, it is not possible for us to determine if the maintenance event could 

have been detected with the help of sensors. 



 

 
 

 

 

For training the anomaly detectors, we combined data from all the engines, and trained DBSCAN, IF, and AE algorithms 

on that data without the use of any labels. We then set thresholds for each in such a way that about one percent of the data 

points are classified as anomalous by the algorithms. We apply anomaly detection algorithms to the data; generate alarms 

and produce plots for each engine as shown in Figure 7. The maintenance subject matter experts (SME) would determine 

the effectiveness of each algorithm by examining the generated alarms and their confidence value and deciding if they are 

true detections or false alarms. Based on a sampling of the detected anomalies and maintenance records, a positive 

correlation was found between the detection of an anomaly and the indication of a need for maintenance. 

 

 

   Figure 7. Alarms generated by DBSCAN, isolation forest, and autoencoder for a specific engine. 

IMPLEMENTATION 

After the algorithms are trained and evaluated, they are then deployed to begin ingesting and analyzing data in real time. 

Data ingestion in the production environment is more challenging than during training and evaluation as is often the case 

with ML projects. To effectively deploy the trained models, some data wrangling first needs to be performed. In the 

production environment, a subset of the sensors available in the training data produces signals at irregular intervals. The 

sensors are not producing output simultaneously. So, to run inference, a batch of recent sensor values from all applicable 

sensors is collected. Then the timings of the sensor values are matched while unmatched values are dropped. The batch of 

collected values is normalized and anomalies are detected. Afterward, a waiting period of the batch size multiplied by the 

typical interval between sensor values is performed before fetching new values. The batch size is then a tradeoff, longer 

batch sizes lead to fewer inference runs; however, this also potentially leaves a longer period between the production of 

an anomalous value and its analysis. 

 



 

 
 

 

Detected anomalies are then reported to the crew in the form of generic maintenance actions. In the case of reconstruction-

based algorithms, such as the AE, we can report more details about the anomaly to help inform the crew. Since 

reconstruction-based methods can report a reconstruction error per sensor value, we are able to report to the crew the 

specific sensors that are behaving most anomalously. This is a form of AI explainability that does not significantly affect 

inference speed.  

 

The deployed application is written in Python using common ML libraries like scikit-learn and TensorFlow. After 

performing extensive unit testing, integration testing, and static code analysis, the application is containerized for 

deployment and orchestration by Kubernetes. The core logic of anomaly detection and reporting is abstracted away from 

any data sources by using “connectors” which are responsible for integrating with a particular problem space. Future 

development will include online learning, so as new values are collected, the algorithm’s distribution of normal data can 

be adapted.  

CONCLUSIONS 

In this paper, we have presented a design of a hierarchical analytics framework that can be used to continuously monitor 

a ship’s operation by examining the outputs of onboard sensors. The framework leveraged three algorithms that use very 

different mechanisms for anomaly detection. At the time of this paper, we have conducted several SME reviews on sampled 

anomalies detected and maintenance actions, with positive confidence in our approach. The next step in this research will 

be to deploy a live instance on a marine vessel operating on 1 Hz data. We have shown that there is a potential to combine 

these algorithms to achieve better accuracy and explainability. Automating this process can free operators from repetitive 

tasks and potentially reduce the possibility of error. Based on some of our initial reviews, it is possible to flag the anomaly 

with adequate time to plan repairs, ask for assistance, or change operation prior to a failure event, thereby increasing the 

machine uptime and readiness. These are all steps towards predictive maintenance of naval ships which would facilitate 

the readiness and availability of ships in a budget-constrained environment. The final system would require onboard 

implementation of such a framework and thorough testing over an extended period. 
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