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A B S T R A C T

When fingerprints are deposited, non-uniform pressure in conjunction with the inherent elasticity of

friction ridge skin often causes linear and non-linear distortions in the ridge and valley structure. The

effects of these distortions must be considered during analysis of fingerprint images. Even when

individual prints are not notably distorted, relative distortion between two prints can have a serious

impact on comparison. In this paper we discuss several metrics for quantifying and visualizing linear and

non-linear fingerprint deformations, and software tools to assist examiners in accounting for distortion

in fingerprint comparisons.
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1. Introduction

When fingerprints1 [1–6] are deposited, variations in pressure
in conjunction with the inherent elasticity of friction ridge skin
often cause linear and non-linear distortions in the resulting ridge
and valley structure. When a three-dimensional finger is applied to
a two-dimensional surface, the resulting image is generally
distorted with respect to the original skin. Distortions in the
fingerprint can be caused by the substrate (e.g. curved or flexible
objects), matrix (e.g. viscous substances), development medium
(e.g. powder buildup), and the pressure and direction of deposition
[7]. Deposition pressure (downward pressure) can change the
width of ridges and valleys, as well as the appearance of minutiae,
ridge edge details, and pores [8]. Shearing (lateral pressure in a
single direction) will cause elongation or compression of the print,
resulting in linear differences in the location of minutiae or other
features. The most complex non-linear distortions are caused by
torque (twisting pressure), which can cause apparent changes in
* Corresponding author. Tel.: +1 304 848 3918.
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1 Regarding the use of terminology – ‘‘latent print’’ is the preferred term in North

America for a friction ridge impression from an unknown source, and ‘‘print’’ is used

to refer generically to known or unknown impressions [1]. We recognize that

outside of North America, the preferred term for an impression from an unknown

source is ‘‘mark’’ or ‘‘trace,’’ and that ‘‘print’’ is used to refer only to known

impressions. We are using the North American standard terminology to maintain

consistency with our previous and future papers in this series [2–6].

http://dx.doi.org/10.1016/j.forsciint.2014.08.007

0379-0738/� 2014 Elsevier Ireland Ltd. All rights reserved.
the overall pattern as well as substantial differences in the relative
locations of features [9]. Latent fingerprints can be highly distorted
due to the combination of some or all of these factors. Exemplars
also can be distorted, particularly in the upper corners of rolled
prints.

Anatomical constraints affect how the finger pad reacts to
pressure. Areas in the center of the finger can distort more than the

less flexible tips or edges. The ability of skin to stretch or compress

is affected by the direction of ridge flow: skin is less flexible in the

direction of ridge flow than perpendicular to flow. Therefore cores

and deltas respond differently to pressure than open fields of

parallel ridges, and different pattern types react differently to

pressure [9]. The effects of pressure and finger deformation may or

may not be apparent in the analysis of a single impression.

However, even when individual prints do not appear to be

distorted, the relative distortion between two prints can have a

serious impact on comparison.
Here we model the linear and non-linear relative distortion

between pairs of latent and exemplar prints. The models are based
on the annotation of corresponding minutiae by latent print
examiners, to provide tools to assist in fingerprint comparison.
These models are used in the implementation of ‘‘ghost cursor’’
functionality in the Federal Bureau of Investigation’s (FBI’s)
Universal Latent Workstation (ULW) [10]: for any cursor location
in one image, the ghost cursor is shown at the estimated
corresponding location in the other image. We also show how
the models can be used in visualization tools, and in metrics
quantifying the extent of distortion.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.forsciint.2014.08.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.forsciint.2014.08.007&domain=pdf
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2. Background

The presence of elastic distortion in fingerprints plays a
significant role in automated fingerprint matching algorithms.
These algorithms automatically determine the similarity or
correspondence between friction ridge impressions [11,12]. In
most cases, the pairwise similarity is computed by analyzing the
spatial distribution of minutia points. If the minutiae from two
impressions are very similar then the algorithm returns a relatively
high score, implying a high probability that they are from the same
source. Early fingerprint matching algorithms would determine
the similarity between minutia sets based on an affine registration
model. Affine models can be decomposed into rigid, semi-rigid, or
full-affine. Rigid models account for translation and rotation. Semi-
rigid models include the addition of uniform scaling. In the
literature, semi-rigid models are often referred to as similarity
transforms. Full affine models additionally account for non-
uniform scaling and skew. Thus, non-linear distortions resulting
from the elastic nature of friction ridge skin were unaccounted for,
often resulting in poor or suboptimal correspondence between the
minutia sets. Great strides have been made with respect to
mitigating non-linear distortion in automated fingerprint recogni-
tion systems. These approaches can be generalized into two
categories. Implicit strategies typically mitigate distortion during
the matching stage by relaxing constraints with respect to the
geometric relationships between minutiae sets. On the other hand,
explicit strategies estimate distortion prior to matching, thereby
allowing minutiae to be pre-distorted, typically via a non-linear
transform.

In [12], an adaptive elastic matching algorithm was proposed
that utilizes tolerance boxes and string matching. The authors note
that non-linear deformation present in fingerprints has a tendency
to radiate outward from the center of deformed print regions. Thus,
the tolerance boxes are iteratively increased moving outward from
the center of deformed regions. Watson and Casasent [13] explored
several correlation filters designed specifically to provide robust-
ness against fingerprint distortion. Each filter is generated from
training on several impressions of the same finger. Thus, variability
across the different impressions can be captured within the filter.
The authors report that their filter approach compares favorably to
traditional minutiae matching based approaches.

Non-linear warping techniques have been explored to explicitly
account for the relative distortion between a pair of impressions.
That is, warping provides the ability for distortion to be estimated
and removed prior to final stage minutiae matching. Note that
warping strategies require corresponding minutia sets that are
determined by automated feature extraction algorithms or by
humans. Therefore, the accuracy of the models used for warping
depends on the precision and correctness of the corresponding
minutia. Another limitation with warping strategies is that they are
susceptible to excessive deformation if unrelated minutiae are
treated as if they are corresponding: metrics such as bending energy
are used to detect such excessive deformation. In [14,15], the Thin
Plate Spline (TPS) [16] warping algorithm was applied to mitigate
fingerprint distortion. In particular, TPS was applied to non-rigidly
align the minutiae sets to increase matching performance. Given
several impressions of the same finger, Ross et al. [17,18] utilized the
TPS algorithm for creating an average deformation model based on
minutiae and ridge curve correspondences. The estimated average
deformation is then used to pre-distort minutiae prior to a final
matching stage. Novikov and Ushmaev [19] propose the numerical
solution of the Navier linear PDE as an alternative to TPS. They argue
that their approach is more robust than TPS when only a small
number of corresponding minutiae are available. Similarly, Liang
et al. [20] apply a multi-quadratic radial basis function instead of
the traditional TPS basis function. The multi-quadratic function
provides better local support. That is, the magnitude of the warp is
much weaker in regions where minutiae are sparse. In contrast, the
magnitude of the warp is much greater in regions where the spatial
distribution of minutiae is dense.

Warping strategies require a correspondence between minutiae
sets in order to estimate deformation and subsequently mitigate
the extent of distortion. An alternative to warping, that does not
require minutiae point correspondence, is impression normaliza-
tion. More specifically, distortion is corrected a priori, such that
traditional matching algorithms can be used. In [21], Senior and
Bolle provided an approach that normalizes the ridge skeleton of
an impression such that the distance between all ridges is equally
spaced. This approach handles compressive or expansive distor-
tions orthogonal to the direction of the ridge flow fairly well.
However, distortions of the ridge flow along the primary ridge
direction are not mitigated.

3. Approach

In this paper, we develop metrics and visualization tools that
can be used to assist examiners with linear and non-linear
distortions during latent fingerprint comparison. To achieve this,
we adopted a strategy from the category of explicit approaches,
notably, warping. Our warping strategy utilizes manually anno-
tated minutia correspondences between a latent and exemplar
print. As with all warping strategies, we first globally align the
correspondences through an affine transform. Following this, the
TPS algorithm is applied to quantify the relative non-linear
deformation between the minutia correspondences.

We then aggregate metrics and image representations from the
linear and TPS models for visualizing relative distortion. The
following subsections detail this approach.

3.1. Global pre-alignment

Prior to estimating the relative non-rigid deformation, we
establish a global alignment between the corresponding minutiae
sets in the latent and exemplar print via an affine transformation as
in Mital et al. [22].

Let E = (e1, e2, . . ., eN)T and L = (l1, l2, . . ., lN)T represent the
corresponding minutiae point pairs from the exemplar and latent
print, respectively. The coordinates of latent points, L, can be
expressed in terms of the coordinates of exemplar points, E, as
follows:

E ¼ AL þ t;

where A is a 2 � 2 linear matrix and a 2 � 1 vector t. A planar affine
transformation is described by 6 parameters which account for
rotation, scale, shear, and translation. Thus, the transformation can
be determined from 3 pairs of corresponding minutiae points by
solving for the coefficients of matrix A and the translation vector t:

Ex ¼ a11Lx þ a12Ly þ t1

Ey ¼ a21Lx þ a22Ly þ t2
:

We opted for a least squares approach for estimating both A and t,
based on examiners’ marking of three or more corresponding
points. Thus, matrix A is then estimated as follows:

A ¼ ẼL̃
TðL̃L̃

TÞ
�1
;

where Ẽ and L̃ represent the exemplar and latent points after mean
centering, and T corresponds to a matrix transpose operator. The
translation vector, t, is calculated as:

t ¼ Ē � AL̄;
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by computing the centroid of each point set, Ē and, L̄ and taking the
difference.

3.2. Thin plate splines

Having determined the affine alignment based on the minutia
correspondences, we next construct a thin plate spline (TPS) model
to estimate the relative non-linear deformation, f, between the
correspondences. The warping function f interpolates the point
correspondences (li, ei), that is, f(li) = ei, 8 i = 1, 2, . . ., N.

f ðlÞ ¼ Al þ WT sðlÞ;

where A is a 3 � 2 affine matrix, WT is a N � 2 coefficient matrix,
and s(l) = [U(l � l1), U(l � l2), . . ., U(l � lN)]T where U(l) = l2 log(l2).
The warping function f minimizes the TPS deformation energy R(f):

Rð f Þ ¼
Z Z

@2
f

@x2

  !2

þ 2
@2

f

@x @y

!2

þ @2
f

@y2

 !2
0
@

1
Adx dy;

which ensures that each point in the latent impression is mapped
to its corresponding point in the exemplar impression. The
Fig. 1. (A) Latent impression overlaid with minutiae (crosses). (B) Exemplar impressio

determined from corresponding minutiae in both the latent and the exemplar. Note tha

Registered latent impression that has been transformed with the described TPS model so

(Note that images A–D are aligned vertically and horizontally with respect to the top 
parameters of the TPS model are calculated by solving the
following linear system of equations:

KW þ PT A ¼ V
PW ¼ 0

;

where K, P, V are defined as:

Ki j ¼
Uðli � l jÞ; i 6¼ j
0 i ¼ j

�
;

P ¼

1 lx1 ly1

1 lx2 ly2

..

. ..
. ..

.

1 lxn lyn

0
BBB@

1
CCCA

T

;

V ¼ ex1 ex2 . . . exN

ey1 ey2 . . . eyN

� �T

:

Here, (lx, ly) and (ex, ey) are the xy-coordinates of the minutiae in
the latent and exemplar impression, respectively. For in-depth
examples and a review of the TPS mathematics, the reader is
referred to [16]. An example of global alignment and TPS warping
is demonstrated in Fig. 1.
n overlaid with minutiae (circles). (C) Latent impression after affine registration

t alignment is poor near the cluster of minutiae in the center of the impression. (D)

 that all latent minutiae (crosses) overlay precisely the exemplar minutiae (circles).

right minutia.)
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3.3. Metrics

We now describe two metrics that may be used to characterize
the relative deformation between a set of impressions: (1) a
Euclidean metric that captures the residual distance between
corresponding minutiae points after affine registration (restricted
to translation, rotation, and uniform scale), and (2) the bending
energy metric which is provided through the TPS model. Residual
distance accounts for both linear and non-linear distortion,
whereas bending energy accounts only for non-linear distortion.

Recall that affine transformations between minutiae sets often
result in poor alignment because of the way friction ridge skin
deforms during deposition. Thus, the resulting residuals may be
used as an indicator for deformation. The summation of these
residuals can be thought of as a measure that quantifies the
distance required for perfect alignment. Residual distance, RD, is
calculated as follows:

RD ¼
PN

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl0xi � exiÞ

2 þ ðl0yi � eyiÞ
2

q
N

;

where l0 and e correspond to the x,y-coordinates of latent points
(after semi-rigid registration) and exemplar points, respectively.
The total number of corresponding points is represented here by N.
Higher values of the residual distance measure indicate a stronger
presence of relative deformation while lower values imply the
opposite. Residual distance accounts for both linear and non-linear
distortion (after accounting for rigid linear distortions).

The TPS bending energy metric is an approximate measure to
the deformation energy R(f). Bending energy accounts only for
non-linear distortion (after accounting for affine linear distor-
tions). This expression is equivalent to:

Rð f Þ ¼WT PW

N
:

Fig. 2 provides an illustration of the residual distance and the
bending energy metrics when applied to minutiae sets from latent
and corresponding exemplar impressions in the NIST SD27 data set
[23] (using the ‘‘match’’ corresponding minutiae). Fig. 2 also shows
how erroneous corresponding points affect the metrics. We found
that residual distance values above 20 were generally associated
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Fig. 2. Illustrates plots of the residual distance and bending energy metrics for the NIST SD

value indicates stronger deformation). The circles represent those impressions that were

‘‘bad’’ and ‘‘ugly’’, respectively. The numbers represent impressions in which there were (deli

respectively. Note  that  for  bending  energy,  the  sets  with  six  or  eight  correspondence   errors

that  did  not  have  correspondence    errors,  and  therefore  not  shown.
with erroneous correspondences, as were bending energy values
above 0.2.

Manually annotated minutia correspondences between a latent
and exemplar print are limited by human factors, and therefore
could include erroneous correspondences, either through accident
or errors in expertise. Distortion metrics can be used to flag
potentially erroneous correspondences, as very high values of
either residual distance or bending energy indicate amounts of
distortion that would be improbable or impossible in correctly
annotated minutia correspondences. For evaluation, we deliber-
ately created latent-exemplar pairs with erroneous correspon-
dences. Each set consisted of twelve latent-exemplar pairs from
the NIST SD27 data set. Errors were introduced by selecting a
correspondence at random, and then swapping the latent points
from the nearest neighboring correspondence. For each image pair,
four erroneous markups were created, with two, four, six, and eight
incorrect correspondences. Multiple swaps of the same point were
not allowed.

4. Visualization tools – grid warps and heat maps

The TPS modeling approach described in the previous section
provides the ability to quantify relative deformation between two
impressions, provided correspondences such as minutiae are
marked in the impressions. Furthermore, the TPS modeling
approach can be used to transform one impression so that it can
be overlaid on the other, after the relative deformation is estimated
as illustrated in Fig. 1. The transformed impression can be used for
visualizing relative distortion but the visual cues may be difficult to
observe depending on the impression background and clarity of
the ridge flow. To that end, we introduce grid warps and heat maps
for visualizing the relative deformation between two impressions.

The grid warp is a simple and straightforward strategy for
visualizing relative deformation. Once the affine parameters and
warping function f have been estimated, they are used in sequence
to warp a 2D grid of vertical and horizontal lines. The warped grids
provide a strong visual cue for local deformation within the
impression.

The heat map is another method for visualizing relative
deformation between impressions, which makes use of the
residual distance metric. Instead of computing the distance
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27 data set [23]. Both metrics are monotonic with respect to deformation (a higher 
 characterized by an examiner as ‘‘good’’, while the crosses and diamonds indicate 

berate) errors in corresponding minutiae, indicating 2, 4, 6, and 8 correspondence errors, 

  were  in  the  range  0.2338–2.281,  all  above the maximum bending  energy  for   the    set   



Fig. 3. Examples of grid warps and heat maps. (Column 1) exemplar; (Column 2) corresponding latent impression aligned with the exemplar through an affine

transformation; (Column 3) grid warp using the TPS warping function estimated from the latent and exemplar impression, with convex hull of the warped minutiae points

highlighted; (Column 4) heat map of the deformation.
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between minutiae, we compute the Euclidean distance between
the TPS warp and the affine transformed coordinate spaces. Thus,
the magnitude of the distance is used as a visual cue for relative
deformation. Note that regions in the impression that do not
contain minutiae may not provide an accurate representation of
the relative deformation. Therefore, once the distances have been
computed, we apply a binary mask to the heat map which is
restricted to the convex hull of the warped minutiae points. Higher
intensity values in the map indicate higher levels of deformation
while the opposite is true for lower values. Fig. 3 provides an
illustration of the grid warps and heat maps. The first row
corresponds to SD27 impression 222U which was characterized by
residual distance metric as having the least relative deformation
(Residual distance = 2.74; Bending energy = 0.0062). The second row
corresponds to impression 221U, which had the least relative
deformation as ranked by the bending energy metric (Residual

distance = 2.76; Bending energy = 0.0046). The third row corre-
sponds to impression 059G which was ranked by the residual
distance metric as having the greatest relative deformation
(Residual distance = 16.40; Bending energy = 0.0505). Lastly, the
fourth row corresponds to impression 166B which was ranked by
the bending energy metric as having the greatest relative
deformation (Residual distance = 10.89; Bending energy = 0.1894).

5. ULW ghost cursor

One difficulty often encountered during fingerprint comparison
is that when the examiner’s eyes are moving between two images,
it is easy to lose track of the specific locations being compared. For
non-computer comparisons (i.e. using paper fingerprint cards,
photographs of latent prints, or physical evidence), examiners
would use various tools to provide reference points, including
pointers (such as dissecting needles), transparent disks with
inscribed lines or circles (Battley disk), or paper or metal plates to
block out extraneous areas. For computer comparisons, examiners
can use software annotations to serve as references, but these do
not serve well when performing comparisons of potentially
corresponding regions before anchor points have been established;
some examiners will still use physical pointers (such as two
pencils) to keep track of locations in both prints.

In the ULW Comparison Tool, the warping technique described
here is used in the implementation of a ‘‘ghost cursor’’. The user



Fig. 4. Example of ghost cursor in ULW Comparison Tool. The cursor (arrow in left image) and corresponding points (circles), are used by the software to display a ghost cursor

(cross in right image) at the estimated corresponding location. The magnifier is shown at the bottom.
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marks corresponding features as defined in the ANSI/NIST-ITL 1-
2011 standard [24], using the Comparison (COMP) transaction
described in the Latent Interoperability Transmission Specification
[25]. Using the corresponding points marked by the examiner, the
software defines a distortion model to map projected correspon-
dences between locations in the two images; a minimum of three
points is required. Wherever the user places the cursor, the
software will display a ghost cursor at the estimated corresponding
location, as shown in Fig. 4. Since the ghost cursor is displayed in
real time, the examiner can use it while moving the cursor to
follow ridges and count ridges.

In comparing prints, the distance between the areas being
compared can be problematic: it is much easier to perform a
detailed comparison when the areas being compared are
immediately next to each other. ULW addresses this problem
with ‘‘magnifier’’ functionality (Fig. 4): when the user chooses to
display the magnifier, the areas immediately around the cursor and
ghost cursor are displayed side by side. The magnifier is not static,
but tracks cursor movement about the image, allowing detailed
comparison when following the sequence of ridges.

An early version of the ghost cursor was demonstrated at the
2008 International Association for Identification [26], using
Delaunay triangulation for the transformation, which was much
less effective than the TPS approach used here. The TPS-based
ghost cursor works well in areas near corresponding points, but
becomes less effective as the cursor moves farther away from
corresponding features. Feedback from examiners has indicated
that the ghost cursor and magnifier have been found to be useful as
optional tools to assist in performing comparisons; menu and
keyboard shortcuts allow them to be easily hidden when not
desired.

6. Summary and discussion

In this paper we presented visualization tools and metrics that
can be used to characterize the relative deformation between two
impressions, as well as software tools derived from these
distortion metrics. We believe that these tools may be of benefit
if used as part of an agency’s quality assurance procedures. For
individual examiners, the ghost cursor and magnifier software
tools that are made possible by these distortion models address
usability issues in performing comparisons, and also can be used as
integrity checks during comparison, by identifying potentially
erroneous corresponding points. For supervisors, such visualiza-
tion tools and metrics can be used to flag comparisons that are
especially distorted, which then could be required to have
additional review or other quality assurance procedures.
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