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Abstract—This work examines the impact of communicative
path loss to the coherency of Unmanned Aircraft (UA) swarms
within constrained, urban environments. Within swarm forma-
tions, UAs must remain close enough to communicate their
position to other swarm constituents while maintaining sufficient
separation to avoid collision. We analyze the tension between
these two separation considerations, comparing different com-
munication protocols and trajectory planning algorithms. With
these considerations, we demonstrate the impact of increased
swarm sizes on swarm coherence.

Index Terms—UTM, UA, Swarm, CV2-X, 802.11p

I. OVERVIEW

Swarm coherency, or the ability for constituent UAs to
coordinate with the swarm, is dependent on the ability of UAs
to communicate their position to one another. We assume that
UAs communicate their position through discrete information
packets and must communicate with each UA. Communication
between UAs is inhibited by path loss. The major factor in
our path loss model is distance. As path loss increases with
distance, so will the probability of packet loss. Therefore, as
path loss increases, we expect swarm coherency to decrease
as the ability to communicate is diminished.

Our path loss model will consider operational measurements
from two communication technologies currently under con-
sideration for supporting UA operations beyond line of sight
(LOS) initiatives: Cellular-Vehicle-to-Everything (C-V2X) and
IEEE 802.11p. Note that we are not modeling the determi-
nation of communication factors, but instead examining the
sensitivity of swarm coherency to these factors.

We will apply this model to two different trajectory planning
algorithms:

1) Optimal Reciprocal Collision Avoidance (ORCA) [1]: a
velocity-based algorithm

2) D* [3]: 3D grid-based, incremental approach commonly
used in autonomous vehicle navigation

Our approach will be to:

1) Calibrate a well clear buffer for each algorithm that
maintains safe separation between UAs

2) Determine how the swarm formations managed by algo-
rithms and their associated buffers are impacted by the
path loss curves for each communication technology

TABLE I
PATH LOSS PARAMETERS DERIVED FROM [4, FIG. 2(A)]

Technology Power c1 c2
802.11p 8 dB 0.1 110
802.11p 23 dB 0.02 200
C-V2X 8 dB 0.05 120
C-V2X 23 dB 0.015 150

Fig. 1. Packet Delivery Ratio over Distance by Power Curve

II. PATH LOSS

We will model path loss, PL(d) by the equation:

PL(d) = (1 + ec1(c2−d))−1

where d is distance in meters and c1 and c2 are factors
derived from the power curves for each communication tech-
nology [4, Fig. 2(a)]. The output is the probability of packet
loss.



Fig. 2. ORCA UA Diagram

From the path loss equation, we derive the Packet Delivery
Ratio (PDR): the number of packets received over the total
packets sent, or the complement of packet loss:

PDR(d) := 1− PL(d)

The PDR curves for the communication technologies in
Table I are shown in Figure 1.

III. THE ALGORITHMS

A. ORCA

Optimal Reciprocal Collision Avoidance (ORCA) is a
velocity-based approach to provide collision-free UA motion
[1]. Each UA constructs a region that will not cause collisions
with neighboring UAs (Figure 2). The region is constructed by
considering the current velocity of each UA and determining
what future positions are possible within a fixed time window.
Within the allowed area of travel, each UA can select its
preferred velocity.

B. D*

D* (D-Star) is a discretized grid-based approach for tra-
jectory planning [3]. In our implementation of D*, this is
performed by ”snapping” each UA’s location and destination to
the closest 3D point in a defined grid. Note that this snapping
is only performed for the purpose of trajectory planning.
UAs do not ”hop” from point to point, but instead move
using a continuous physics model, guided toward intermediate
destinations resultant from the trajectory planning.

An example of a grid along a single street is shown in Figure
3. Paths are calculated based on the shortest path to target in
the grid. UAs avoid collision with other UAs by blocking grid
points from their path that could cause collisions. The grid
granularity impacts the ability to avoid collision. The UAs
must be directed to move towards a grid point on its route of
intended travel. If the grid points are spaced too far apart, the
ability to change course and avoid other UAs is hampered. We
use a five meter distance between grid points to conduct our
experiments.

Fig. 3. Single Street D* Grid

There are differences in how ORCA and D* are imple-
mented, including the time window in ORCA and the grid
granularity in D*. Varying these parameters will produce
different results for our experimental scenarios. Our motivation
is not to produce an exhaustive comparison between the two
algorithms but rather to demonstrate how communication path
loss impacts different trajectory planning mechanisms.

IV. TRAJECTORY PLANNING ENGINE

We incorporated the above communication parameters and
algorithms into a trajectory planning engine. This engine is a
discrete event simulator for the purpose of running multi-UA
trajectory planning scenarios within geographically restricted
regions using parameterizable communication constraints. The
engine generalizes the key operational inputs that are shared
between the different algorithms. The engine was executed
using a High-Performance Computer (HPC) during complex
and high traffic volume scenarios. While the engine does
support LOS, this is not a factor in our scenarios as the UAs
will be positioned within a single open street.

V. CALIBRATION

We first calibrate the safe operational separation for the UA
swarms. To do this, we consider a scenario where two UA
swarms approach head-on (Figure 4) and then pass through
each other (Figure 5). We define a Near Midair Collision
(NMAC) as two UAs violating a five meter separation [7].
In other words, the smallest distance by which two UAs
should ever be separated is five meters. For each algorithm, we
introduce and vary a well clear buffer to ensure that NMACs
do not occur [8].

The well clear buffer is a multiple of the NMAC separation
value and acts as a trigger for UAs to begin deconflicting
with other UAs. The pass-through scenario is an extreme case
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Fig. 4. Swarms Meet

Fig. 5. Swarms Pass Through

by which to determine a suitable buffer. If the UAs are able
to maintain safe separation greater than five meters in this
scenario, it is likely they can maintain a safe separation in
less extreme cases with a similar number of UAs and not
result in a NMAC. The inter-swarm measurements consider
distances between members of different swarms. In Figure 6,
the inter-swarm minimum separation is graphed over time for
D* with varying buffer multiples. The buffer of three times
the NMAC separation value stays above five meters and is
therefore adequate for our calibration purposes to maintain
safe separation. Increasing the buffer to maintain a safe inter-
swarm separation causes the intra-swarm separation to increase
as shown in Figure 7 [7].

In the same manner, we calibrated the buffer for ORCA as
two times the NMAC separation value as seen in Figure 8.
The difference between the buffer requirements for D* and
ORCA can be attributed to ORCA’s variable velocity and the
grid resolution chosen for D*. The variable velocity in ORCA
allows the UAs to slow down when navigating around each
other, whereas in our implementation, D* is restricted to either
traveling a single speed or stopping completely.

The common simulation parameters are defined in Table II.

TABLE II
UA CONSTRAINTS

Qualifier Measurement Value
min speed 0 knots (stationary)
max speed 13 knots (24 km/hour)
min NMAC 5 meters

Fig. 6. Inter-Swarm Minimum Separation for D* Varying Buffer

Fig. 7. Intra-Swarm Minimum Separation for D* Varying Buffer
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Fig. 8. Inter-Swarm Minimum Separation for ORCA Varying Buffer

Fig. 9. Intra-Swarm Minimum Separation for ORCA Varying Buffer

Fig. 10. Initial Positions of UAs in Single Swarm

VI. DETERMINATION OF FUNCTIONAL SWARM SIZE

With the buffer calibrated, we examine how the functional
size of the swarm is impacted by path loss. We do this by
varying the number of UAs in a swarm and measuring its
coherency via PDR.

We test a scenario using two communication technologies at
two power levels [4, Fig. 2(a)]. The values are shown in Table
I. The scenario starts with the swarm as a single line of UAs:
effectively a swarm ”train” (Figure 10). We intentionally place
the UAs close together to force the algorithms to deconflict
and to have the swarm start with as high of a PDR as possible.

We then allow the swarm train to advance forward. Initially,
we expect little packet loss as the spatial size of the swarm will
be small enough that path loss will be minimal. In other words,
their close proximity allows for a high PDR. As the swarm
continues forward, UAs will begin to separate (Figure 11) in
order to reach their target well clear buffer. This will increase
the spatial size of the swarm and introduce path loss. For small
swarms, we will expect the PDR to remain relatively steady,
whereas for large swarms we expect the PDR to drop as more
UAs are farther apart from each other. Whereas we do consider
building structures and LOS within our engine, these are not
factors in our scenarios, as we are only considering simplified
swarm geometries within the center of a single street.

The power curves we use in Figure 1 are validated in
our model through our calibration scenario results which are
plotted in Figure 12. With a power level of 8 dB, the PDR is
near one within a close range (less than fifty meters) and it
has a steep drop off outside of that range. The higher power
level of 23 dB has a shallower slope which allows for a higher
PDR at longer distances.

We vary the number of UAs in the single swarm scenario
from 10 to 35. As the number of UAs increases, the maximum
separation between UAs increases as shown in Figure 13. We
next discuss the impact of increasing separation on PDR for
each algorithm and communication technology.

A. ORCA Single Swarm Results

The PDR timeline for using ORCA at 8 dB is shown in
Figure 14 for 802.11p and Figure 15 for C-V2X.

In both 8 dB scenarios, as the number of UA increases,
the PDR shows substantial deterioration. For a 10 UA swarm,
802.11p at 8 dB maintains a PDR close to one, unlike C-V2X
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Fig. 11. UAs Spread Out in Single Swarm

Fig. 12. Packet Delivery Ratio over Distance from Experiments

at 8 dB. This is due to the power curve for 802.11p at 8 dB
being closer to one for a longer distance than C-V2X. Ten
UAs remain within a range of high PDR for 802.11p.

In contrast to 8 dB, the shallow slopes for 23 dB depicted
in Figure 1 are reflected in ORCA’s results in Figure 16 and
17. The swarms do not start close to a PDR of one and have
less change in PDR over time in comparison to 8 dB. At the
highest number of UAs for CV2-X, the PDR dropped to under
75 percent. 802.11p at 23 dB has the least difference in PDR
over time. At each swarm size, the PDR is over 90 percent.

Figure 18 diagrams the impact of larger swarm sizes. At
10 UAs, the swarm spreads out to maintain a safe separation
within a distance that still allows for a high PDR. At 35 UAs,
there are more pairs of UAs that are far apart to maintain safe
separation in the swarm. The pairs of UAs toward the front
and back of the swarm experience the most packet loss and
lower the overall PDR.

Fig. 13. Maximum Separation of UAs over Time

Fig. 14. ORCA 802.11p 8dB

B. D* Single Swarm Results

The results for D* are similar to ORCA in terms of the
general shape of the PDR curves. A key difference is with
802.11p at 8 dB in Figure 19. Particularly with greater than 30
UA, the PDR drops as expected, but it does not begin to flatten
out like ORCA in Figure 14. A flatter curve at the end implies
that the UAs have reached a steady-state after spreading out
above the buffer. Since D* does not show this behavior, the
swarm is still deconflicting and spreading further apart. This
is due to the comparatively larger buffer for D* versus ORCA.
This causes the swarms in D* to reach a distance where there
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Fig. 15. ORCA C-V2X 8dB

Fig. 16. ORCA 802.11p 23dB

is a great drop off in PDR with 802.11p at 8 dB. The D*
results for 802.11p and C-V2X at 23 dB in Figure 21 and 22
are similar to ORCA. This is expected as the PDR for these
communication technologies are not as affected by distance.

VII. CONCLUSIONS AND FUTURE WORK

Measuring the coherency of swarm behavior is a surrogate
for the effectiveness of many vehicle-to-vehicle operational
performance. As more UAs enter into the urban airspace,
paradigms for their safe operation are being considered.

For swarms to function as a unit, their coherency must be
maintained. UAs must not stray too far from their swarm else

Fig. 17. ORCA C-V2X 23dB

Fig. 18. Visual Diagram of Results

risk losing communication with other swarm members due to
path loss and UAs must remain sufficiently separated from
other swarms members else risk collision.

We explored the tension between safe separation and swarm
compactness using the ORCA and D* path planning algo-
rithms and operational parameters for CV2-X and 802.11p.
Safe buffers limit swarm density, thus large swarm member-
ship sizes will require larger spatial sizes and a subsequent
deterioration of PDR. We saw that the power levels for
communication technologies is also a consideration for swarm
coherence. While higher power levels will produce higher
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Fig. 19. D* 802.11p 8dB

Fig. 20. D* C-V2X 8dB

PDR at larger distances, lower power levels provide more
consistently high PDR within shorter ranges. Balancing high
coherence against larger swarm sizes will be a consideration
in tightly constrained urban corridors.

While we focused on distance as the main factor impact-
ing communication between UAs, in future work we will
expand our communication model to include other factors
such as obstacles interfering with LOS. Additionally, this
paper considered only direct connections between UAs. In
future papers we will consider more complex communication
between swarm members examining how different Mobile

Fig. 21. D* 802.11p 23dB

Fig. 22. D* C-V2X 23dB

Ad Hoc Networks (MANETs) topologies impact UA swarm
coherence.
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